
'\

e. .

4

Output-Sensitive Hidden Surface
EIimination for Rectangles

Miwrail J . Atallah
Michael T. Goodrich

September, 1988

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.42

NASA Cooperative Agreement Number NCC 2-387

(N A S A - C R - 1 8 5 4 2 6) O U T P U T - S E N S I T I V E H I L C E N N 89- 2E 4 22
SURFACE E L I H I N A T I D N FOR RECTANGLES
;Research I n s t . for Advanced Computer Unclas Science) 29 p CSCL U9B

G3/61 0217921

Research Institute for Advanced Computer Science

Output-Sensitive Hidden Surface Elimination for
Rectangles

Mikhail J. Atallah’

Dept. of Computer Science, Purdue University, West Lafayette, IN 41907

Xichael T. Goodrich’

Dept. of Computer Science, Tne Johns Hopkins University, Baltimore, MD 21218

Abstract

We present an algorithm for the well-known hidden-surface eIimination

problem for rectangles, which is a b known as the window rendering problem.

The time complexity of our algorithm is sensitive to the size of the output.

Specifically, it runs in time that is O(n1mS + k), where k is the size of the

output (which can be as large as 0(n’)). For values of k in the range between

n’s6/ log n and n2, our algorii;hm is asymptotically faster than previous ones.

1 Introduction

The hidden-surface e m a t i o n problem is well known in computer graphici and com-

putational geometry [6,12,13,15,16,19,20,21,22]: one h given a set of simple, non-

intersecting planar polygons in 3-dimtnsionaI space, and a projection plane x , and wishes

to determine which portions of the polygons are visible when viewed from inb i ty dong
a direction normal to A, assuming all the polygons are opaque. An important special
case of this problem occurs when the polygons are all hothetic rectangles, Le., the rect-

angles are all p a r d e l to the zy-plane and have sides that are parallel to either the z-

or y - e . This version of the hidden-surface elimination problem is also known ts the

window rendering problem [4], since it is the problem that must be solved to render the

windows that might need to be displayed on the screen of a work-station. (See Figure 1.)

Another situation where one often wishes to render such a collection of rectangles is in

‘Thii author’s research was supported by the Office of N a d hearch under G m t r N00014-84
K-OS02 and ~000148G-%0680, and the National Science Foundation under Grant DCR-8451393, with

S’atching fun& from ATbrT. Part of this research waa carried out while this author was visiting the Rc-
rearch Institute for Advanced Computer Science, NASA h a Fbearch Center, Moffett Field, California.

’This author’s research waa supportd by the National Science Foundation under Grant CCR-8810568.

I

Figure I: (a) isothetic rectangles; (b) their visible portion.

drafting software, where any time a rectangle R1 is created, by the draftsman, before

rectangle RZ is created, then R1 is 'behind" R2, uniess the draftsman explicitly changr
this ordering (e+, by executing J 'move to front" c o m a a d on R1 or, equidently, a

'send to back" command on R?).

Using the terminology of [XI, we are interested in the object space vcsion of this p rob

lem. That is, we want a method that produces a devicoindependent, matheaatically-

based representation of the visible surfaces. One reason for our interest in an object

space solution is that such a solution is not dependent on a certain method for rendering

polygons nor on the number of pixels on a display screen (which seems to grow with

each passing year). in addition, an object space solution gives us a representation that

is easiiy scaled and rotated.

We briefly review some of the efficient algorithms for the window rendering problem.

Since this problem is a special czse of hidden-surface elimination [XI, any algorithm

for the general case can also be used for this problem. In [13) McKenna shows how

to solve the general hidden-surface elimination problem in O(n') time, generalizing an

algorithm by DCvai [SI for the e s k r hidden-line dimination problem that also runs in

O(n2) time. (In the hidden-line -h ina t ion problem one is only interested in computing

the portiors of the polygon& jc2z535ts that are visible.) Both of these algorithms are

worst-case optimal, because h e r e aie problem instances that have e(n?) output size

k.g., a collection of rectangles that form a cross hatched pattern, as in Figure 2a.)

Unfortunately, these algorithms always take O(n2) time, even if the size of the output

is very small (e.g., O(1)). There are algorithms that run faster than O(n') for certain

2

Figure 2: (a) Quadratic output size; (b) Small output size with
quadratic I.

problem instances, however. We review these next.

In [lS] Nurmi gives an algorithm for general hidden-line e i i n a t i o n that runs in

O((n + I) log n) time and O((n + I) logn) space, where I is the number of pairs of line

segments whose projections on A intersect (I is O(n2)). Schmitt (191 is able to achieve

this same time bound for hidden-surface elimination using only O(n + I) space. If I is
u(n2/10ga), then these algorithms clearly run faster than O(n2) t h e . Their worst-csse

performance is, however, a suboptimal O(nZ log n) time (if I is e(n2)).
In [E] Gfting and Ottmann address the window rendering problem (they are proba-

bly the first to study this important special cme of hidden-surface e i i n a t i o n) , giving an

algorithm that runs in O(n log' n + I) time. In [9] Goodrich shows how to solve general
hidden-line elimination, and a version of hidden-surface e l i ina t ion that includes the

window rendering problem as a special cbsc, in O(n log n + I + P) time, where P is the

number of pain of polygons whose projections on A intersect (P is O(n*)). Both of these

a l g o r i t h are optimal in the worst case and also take advantage of problem instances

that are "simpicr" than in the worst case, but they are not truly output-sensitive. In-
deed, there are problem instaxes where these two algorithms run in O(n?) time even

though the output size is r e q szall (e.g., a large rectangle that covers up a collection

of cross hatched rectangles, zs in Figure 2b.)
Recently, Bern 141 and Preparata, Vitter, and Yvinec [lSl have shown that one can

solve the window rendering problem in O(n log n log log n+k log n) time and O(n log' n+

klogn) time, respectively, where k is the actual size of the output (recall that k is at

3

worst e(n:)). Thus, they have shown that one can solve the window rendering problem

in an output-sensitive manner. Their algorithm are not worst-case optimal, however.

In this paper we give an algorithm for the window rendering problem that is both

worst-case optimal and output-sensitive. Specifically, our algorithm runs in O(n1m5 + k)
time, where k is the actual size of the output. Thus, our aIgorithm is faster than those of

Bern [4] and Preparata, Vitter, and Yvinec [Is] for k in the range between nl.'/ 106 n and

n*. Our algorithm is based on a problem-division approach to hidden-surface elimina-

tion. In this approach one typically divides the problem-call it A-into two dissimiIar

subproblems B and C, solves B and C independently (usually by completely diflerent

techniques), and then 'marries" the solutions to B and C to give a solution to A. Apply-

ing this approach to the window rendering problem can lead to an algorithm that runs

in O(n1-510gn + klogn) time, although the details are somewhat non-triviaI. This, of

course, is worse than previous solutions for all values of k. One of the ways we avoid these
logarithmic multiplicative factors is by modifying the approach so that we divide A into

B and C, and solve 8, just as before, but then solve C while marrying the solutions to

B and C. Other ways we avoid these factors are baaed on fundamenta! paradigms from

computational geometry, including bdched dynumic searching 181, spoec-sweeping [171, .
and fractional cascading IS].

In the next section we give a high-level description of our algorithm, and in the

subsequent sections (3-3) show how to implement each of its constituent steps. We

conclude in Section 6.

2 An Overview of the Window Rendering Algorithm

Suppose we are given a collection S of n non-intersecting isothetic rectangles in p, Le.,

a collection of rectangles paraIIe1 to the zy-plane such that all edges are parallel to either

the 2- or y-axis. The problem is to compute all the portions of each rectangle that are

visible from z = x with light rays that art parallel to the z-axis (Le., the projection

plane is the zy-plane).

More specifically, each rectangle R is given by a triple ((tl, yl), (5 2 , yz), z), where

(z1,yI) is the lower-left corner of R, (z2,y:) is the upper-right corner ol R, and z is

t& z-coordinate of the plane to which R belongs. For the remainder of this paper we

assume that the relationships "to the left of" and "to the right of" are with respect

4

to z-coordinates, that the relationships 'above* and Ubelown are with respect to y-

coordinates, and that the relationships *in front of" and "behind" are with respect to

z-coordinates.

There are many ways that one can specify what constitutes a solution to the hidden-

surface elimination problem [12,13,16,20,21,22). Let G be the planar subdivision deter-

mined by a solution to the hidden-line dimination problem. Typically, a solution to the

hidden-surface elimination problem is given by G, augmented so that each polygonal face

of G stores the name of the rectangle of S that is visibile in .that face. Our exposition

will gain in sirnpiidty if our output specification, which we denote by V i s (S) , generalizes

this so that each face is itself a rectangle (our Vis(G) is obtained from G by adding to

it a small number of extra edges, as explained below).

We begin our dehition of Vis (S) by examining the subdivision G a little more

closely. For each vertex v of G either v corresponds to a (visible) corner point of a

rectangle in S or v corresponds to a.n intersection of two visible edges (where one of

them becomes occluded by the other, Le., an intersection of the form T, I, I-, or 4).

We call such intersections dead ends, and classify them into two types: vertical dead

en&, where the t e r r a t i n g segment is vertical (i.e., T or I), and horizontd dead ends,

where the terminating segment is horizontal (Le., I- or 4). In 'Figure l b , points e and

are corners, u is a J, b is a I, c is a I-, and d is a i. In that same figure, points

a, b, e and d are dead ends: a and b are vertical dead ends, while c and d art horizontal

dead ends. For each corner point v in G, extend a horizontal ray from u in the direction

that points away from the rectangle to which v belongs. Thus, in Figure lb, the ray

emanating from e goes leftward, whereas that from f goea rightward. The point on the

first (vertical) edge of G that is intersected by this ray is known as the horizontal shodow

of u (if no such intersection with the ray occurs, i.e., the ray continues to infinity, then we

consider the point at infinity to be the horizontal shadow of u). Call the new subdivision

created from G by diawing an edge from each corner point to its horizontaI shadow the

rectangular decomposition of G , and let C' fcnote this subdivision. Obviously each face

of G' is iec ta~~gda: rather than poiygozd. i':gu;e 3 shows the G' that results from the

G of Figure lb. In that figure, the horizontal shadow of e is 9 , that off is a t (+cc, y(f)).
Our - characterization, Vis (S) , of a solution to the hidden-surface elimination problem

for S consists of the subdivision G' augmented so that each rectangular face of G' stores

the name of the rectangle of S that is visible in that face.

-

5

Figure 3: The subdivision G’. The edges joining corners t o their shad-
ows are shown dotted.

By defining Vis(S) in this way we get a characterization that consists entirely of recti-

angular faces, yet is at most twice the size of G. For maay applications, our specification
should lead to simpler rendering algorithms, e.g., by simpliiying scan - 1‘ me conversion.

For convenience, we assume throughout the paper that the pimar graph Vis(S)

Iies in the zy-plane, so that any rectangular face of Vis(S) is also in the zy-plane. Of
course, each such rectangular face knows which rectangle of S b visible in it, and the

z-coordinate of that rectangle (throughout the paper, each rectangular face of a VI’s(S)

is dways assumed to have, attached to it, which rectangle of S is v-isible in it).

There are a number of ways one can represent an embedded planar graph, such =
Vis(S) . Three such representations are the ‘winged edge” structure of Baumgart [2], the

“quad edge” structure of Guibas and Stolfi [U], and the “doubly-connected edge iist”

structure of Muller and Prepsrata [14,17]. Our algorithm does not depend on which

representation one chooses, so long as the representation allows one to determine each

of the following in time prapottional to its size:

1. all edges and faces adjacent to a given vertex t., M well as their orientation with

respect to v,

2. dl vertices and facts adjacent to a given edge c, ~5 weil as their orientation with

respect to e, and -
3. all vertices and edges that lie on the boundary of a given face f, in the order they

occur around f.

6

Each of the mentioned representations provides this.
Given an isothetic rectangle R in Z3 we Iet z (R) denote the z-coordinate of the plane

to which R belongs. Similarly, for any point p in @, we use z (p) , y(p), and z (p) to denote

the r-, y-, and z-coordinate of p, respectively. Our terminology implicitly aasumes that

the observer looking a t the scene from t = 00 has his body parallel to the y-axis, with

both arms extended so they are parallel to the z-axis (the reader probably inferred this

from the way we drew Figure lb). Hence a verticalsegment is parallel to the y-axis,

whereas a korkontol segment is paraIIe1 to the z-axis. Similarly, we say that a plane is

ocrticol (resp., horizontal) if it is parallel to the yz-piane (rap., zz-plane). In addition,

we assume that the z-, p, and z-coordinate of all rectangle endpoints are integers in

the range [1,2n]. If this is not the case, then we apply a preprocessing step that, in

turn for each of the three coordinates, sorts its values in increasing order and replaces

each old d u e by its rank in the sorted Iist. This takes O(n logn) time [l]. For the sake

of simplicity, we w u m e that the z-coordinates of the rectangles' endpoints are distinct,

and similarly for y-coordinates and €or z-coordinates. Modifying our algorithm for the

general case is straightforward, and is left to the interested reader.

The algorithm we outline below constructs Vis(S) .

The Hidden Surface Elimination Algorithm (High-Level Description):

Step 1. Problem division. In this step we divide the endpoints of the rectangles

of S by vertical planes into r groups, each of size [4n/rl (with the possibIe exception of

the last group, which may be smaller). Note that this also divides into r regions, each

delimited by two v e r t i d planes (except for the first and last such regions, which are
deiimited by only one such plane). We call these regions dabs, and let (I&, &, ..., R,)
denote the colIection of slabs iisted from left to right. For each ll, we construct EndPointi

and spar^, where Endpointi denotes the set of all rectangles that have at least one

endpoint in n e , and Spa% denotes the set oi ali rectangia that span n, (i.e., aII rectangles

that intersect IIi but do .not have an endpoint in it). (See Figure 4.) Let Si be obtained

from Spa% by replacing every rectangle R in Span; by 3 .? ni. Similarly, Ict E, be
obtained from Endpoint; by replacing every rectangie f ~2 E d p o i n t i by R n ni. This

step can easily be periormed in O(rn) time.

- Step 2. Computing Vis(E,-). In this step we solve the hidden-surface elimination

problem for each Ei, ignoring a11 rectangles not in E;. This can be done in O((n/r>')

time for each Ei using the algorithm by McKenna (131. In addition, for each Ei we

-

Figure 4: R is in Endpointl, Span?, Spans, a n d Endpoint,.

perform some preprocessing to help us perform the spacesweeping method of Step 3

(given below). The total time complexity of this step is O(tn i n2/r), and its details

can be found in Section 3.

Step 3. Determining visible corners and vertical dead ends. In this step we

determine aIl comers and vertical de$ ends that belong to Vis(S), and for each such

point we determine the rectangles of S that are visible in its vicinity (Le., that are visible

in the faces of Vis(S) adjacent to it). In addition, for each corner point p we End the,

horizontal shadow of p in Vis(S; u Ei), where p E & and its horizontal shadow is now

constrained to be in n; (so that the horizontal rays by which we defined shadows are

stopped by the boundary of IIi, instead of being allowed to proceed to infinity). We call

this the restricted horizontal shadow of p. The main idea of our method for performing

this step is to perform a space-sweeping procedure that simultaneously sweeps through

all the slabs II1, ..Jr to determine all the visible corners and vertical dead en&. This
step requires O(nlogt n f m i n'/r +.k') time, where k' is the total number of (visible)

points discovered in the sweep (note that k' 5 k). Its details are given in Section 4.

Step 4. Detenninlng visible horizontal dead ends. In :his step we repeat

Steps 1-3, except that the roles of the +-a is and y-axis are intert-.tr.red, that is, we

divide by horizontal planes and swtop horizoatally. We do not pf::'=rr=1 :.:?e extra work,

as done in Step 3, to find visibie corners and their shadows, howeve:. That is, this step

simply discovers all visible horizontal dead ends, and, for each one, all the the rectangies

of S that are visible in its vicinity (i.e., that are visible in the laces of Vis (S) adjacent

to it).

-

8

Step 5. Constructing V i s (S) . In this step we combine the information computed

in Steps 3 and 4 to construct a representation of V i s (S) . Since we have already computed

all the visible vertices in V i s (S) , we begin by constructing the subdivision G that they

determine. We do this using two calls to a bucket sorting rou;i:ie [I] , which takes

O(n + k) time. To complete the construction of V i s (S) , we :z-s: iugment G with the

true horizontal shadows of a11 visible corner points. (Recall tkz: Step 3 only yields the

restricted horizontal shadow of each corner point p, that is, the horizontal shadow of p

restricted to the slab to which p belongs.) The main idea of our method for doing this

invoives the construction of left and right "horizontal exposure" lists for each rIi, and the

application of the fractional cascading technique (51 to these lists. This gives us a data

structure that enablu w to find each horizontal shadow in O(1og n + r) time, and then

finish constructing Vis(S) in a further O(n) time. Performing the entire step requires

O(n log n + rn + k) time. The details are in Section 5.

End of High-Level Description.

Assuming that we can perform each of the above steps correctly in the stated time

bounds, this method gives us an algorithm that runs in O(n log2 n+ m + nf/r +- k) time,

where k is the size of the output. Setting r = fi gives us the time bound of O(n"' + k)
that we claimed in the introduction.

*

Let us now give the details for each of the above steps. The details of Step 1 should

be obvious given the above description, so we begin our discussion with Step 2.

3 Step 2: Computing Vis(Ei), and preparing for Step 3

Recall that in Step 2 we wish to solve the hidden-surface elimination problem for each

E; in O((n/r)?) time. Since each Ei contains O(n/r) rectangles, this amounts to being

able to perform hidden-surface elimination in time that is quadratic in the number of

rectangles. As mentioned above, we can do this by calling the algorithm of Mcfienna [13]

as a subroutine. This section, however, does more than just call M.:X-:rnna's algorithm:

i t computes information that will be crucial to the efEcient impkezrz t ion of Step 3.

For that purpose, we need to brieay review Mcfienna's method znd somewhat modify

its output. -
When applied to a set S of isothetic rectangles, McKenna's method constructs the

arrangement in the zy-plane produced by (i) extending each rectangular edge to infinity

Figure 5: The ar rangement resul t ing from Figure 1.

in each direction, (ii) projecting the Iines so obtained on the zy-plane, and (iii) deter-

mining the rectangle of S visible in each rectangular face of the arrangement produced
by these projected lines. Figure 5 shows the arrangement resulting from the situation

depicted in Figure 1 (in boldface are the edges of the arrangement that are projections

of edges of rectangles in S).

Suppose we have already applied McKenna’s method to Ei, producing W(Ei) . First

we use the boundary of lli to “dip” all the infinite horizontal edges of W(&) (i.e., they

now stop at this boundary instead of proceeding to infinity). Then we delete from W(&)
all the segments that are not in Vis(Ei), Le., we eliminate each edge e that has the same

rectangle of Ei visible on both sides of e, unless e joins a corner to the (restricted)

horizontal shadow of that corner (recall that segments that extend from corner points to

their respective horizontal shadows are part of Vis(&)). This is easily done by checking

whether both of the two faces of W(&) that are adjacent to e have the same rectangle

of Ei visible in both of them, and whether e joins a corner to its (restricted) horizontal

shadow.

We now do some preprocessing that will help us eficiently i r r . z l s x n t Step 3. In

Step 3 we will be performing a space-sweeping pro:edure in which =e sweep a horizontal

plane X in the negative y-direction. At certain cvca!j during th.2 s-a-oe? we will need to

update some dynamic data structurw associated with the slab E;. The preprocessing

we - do now facilitates our being able to perform these update operations efficiently. Ba-
sically, we take advantage of the fact that the set of operations we will be performing on

these dynamic data structures are known in advance, i.e., it is a bafched problem. in gen-

10

eral, this paradigm of taking advantage of the batched nature of the dynamic problems

that arise in geometric problems such as ours is known botched dynamic searching.

Applications of this paradigm to other geometric problems ate given by Edelsbrunner

and Overmars 181, for exar;lp!e.

The details of our prqtxezsing steps are follows. Suppose we wish to sweep

a horizontal plane X throug: 'Jfs(Ei) in the negative y-direction (as will happen for

real in Section 4). Such a piane would encounter t = O(n/r) horizontal positions, each

of which coincides with (possib!y many) horizontal edges oi Vis (E;) . Each horizontal

position determines a horizontal plane, which corresponds to a %nap shot" of the plane

X at the time it would encounter that position. The collection of all such horizontal

planes divides n; into t + 1 regions, which we call strips. Number these strips, from

top to bottom, 1, 2, 3, and so on. Thus, the strips form a horizontal partitioning of ni.
Now, for each rectangular face f of Vis(Ei) that intersects (say) the tl strips numbered

to, to + 1,. . . , to + t 1 - 1, create t1 copies of f, each copy being associated with one of

those tl strips. The copy of f associated with strip 8 gets assigned as its key the pair

(8 , ~) where z is the t-component of the rectangIe of E; that is visible in rectangular

face f. (Thus all the copies of f have keys with the same second component.) Observe

that the sum over all f E Vis(&) of the number of (s,z) pairs sssociated with f is
O((n/r)t), because each strip can determine a t most O(n/r) (s , ~) pairs, and there are

O(n/r) strips.

Let Ci denote the toilection of (s, z) pairs, where each (3, z) pair contains a pointer

to the face f in Vis(Ei) associated with that pair. Now, bucket sort Ci using the
lexicographical ordering determined by the (8 , z) keys for comparisons. This takes O(n+

(n/r)') time. For each strip s let Zi,, denote the part of this sorted list that has s as its
key's first coordinate. For each s compare the list with the list &,,+1, constructing

three sorted lists, Same;,a, Dciezc;,,, and Insert;,,+l, defined as follo~vs. The Iist Samei,,

consists of all the rectangular faces f that have, a copy in both Zi,, aad Zi,J+l (the key of

f in Sarnei,, is inherited from the copy in Z,,, rather than from 3%: ir? &,.,+.I). The list

Deletri,J consists of all the rectangdw i a c s f that have a copy i? Z: .. ?.at not in &,,+I

(the key o f f in Dcletei,, is the same as its key in Zi,,). The lis: .!nsert;,,+l consists of

all the rectangular faces f that have a copy in Z;,,+l but not in Zi,s (the key of f in

IrrJerti,,,l is the same as its key in &,,+I).
-

Note that the keys of the elements of Samei,a all have the same first component

11

QRlGlNAL PAGE IS
of POOR QUALrrY

(namely, s), so that the contents of Same;,, are in fact sorted by the second components

of their respective keys (that is, by the z-coordinates of the respectire rectangles of Ei
that are visible in them). Therefore, from now on, we shall ignore the first components

of the keys of the elements of Samei,#. That is, a key is from now on a =-value rather

than a pair (s,:). Similar remarks hold for each Delete+, and also for each Inserti,,.

For each rectangular face f in Irzsert;,,+1, we determine its predecessor in Sumei,,

and store this in a field Prer&,,+l(f) associated with f.
Once this is completed, we no longer need the Same+ lists. The Delete;,, and

Iwerti,J Iists, on the other hand, will become very helpful in performing the space

sweeping procedure in Step 3. Specifically, we shall use them to maintain a list (the

current list) of rectangular faces of Vis(E;) that are intersected by a horizontal plane X

(the plane we use for sweeping in the negative y direction). That is, to move some such

plane X from the strip s to the strip s + 1 we need only consult the Iists and

InserG,,+r to tell us which rectangular faces to respectively delete and insert from the

current list. In addition, by storing, in the field Pred;,J+i(f), the predecessor in

of each rectangular face f E Inserti,,+l, we enable ourselves to perform the insertion of

f into the current list in O(1) time. Section 4 contains the details of how all these things

are done.
The computation of Vis(Ei) and of the Delete;,, lists and Insert;,, Iists (and their

associated Pred;,, fields) takes O((n/r)?) time for each E;, and hence the total time

complexity of Step 2 is O(r(n/r)?) = O(n?/r).

We next show how to combine the information of the previous two steps to implement

Step 3.

4 Step 3: Computing visible corners and visible vertical

dead ends
. - .

In this step, we use the information computed in the previous step te L;: x t h e impiemen-

tation of a spacesweeping proceduit that computes (i) all the c=.:z:: azd vertical dead

ends in all the v i s (S ; ~ E ;) ’ s , (ii) for each such point, the rectangular faces ofVis(S;uE;)

t h t are adjacent to it, and (iii) for each such rectangular face, the rectangle of E; U S;

(and hence of S) that is visible in it.
We implement this step by sweeping space in the negative y-direction with J hoti-

12

I

zontd plane A. We will be using a number of data structures to implement this space

sweep:

1. For each ni we maintain a variable CurVisi that stores the name of the rectan-

:le of Span; having highest z-coordinate among all elements of Span; currently

intersected by A. Note: we never maintain ell of Vis(Si) , just CurVisi.

2. For each IIi we maintain a list Di that stores all the rectangular faces of Vis(&)

that are currently intersected by A, sorced. by non-inc:easing z-cooidinates of the

rectangles of E; visible in them (that is, by assodathg with each face the z-

coordinate of the rectangie of E; that is visible in it). Each D; is represented using

a doubly l i k e d list and has an entry-pointer (or 5nger”) fi that points to the

last face in Di whose associated z-value is greater than z(CurVis;). If there is no

such face in’ D;, then 1; points to the first element in D;. We also maintain for

’ each I& an array of pointers called Where;, such that for every rectangular face

f E Vis(&), W h c r q (f) points to the location of f in D; if f E D;, and is nil

otherwise.

3. We maintain a tree T that contains the set SA of rectangles in u:=lSpani that are

currently intersected by A. (Note that SA contains no more than n elements, since

i t is a subset of .S.) The tree T is represented by a priority segment tree [3,12],
where the leaves of T are essociated with the slabs IIl, n2,. . . , XI,, listed from left

to right. For each internal node v of T we zssociaw a slab n (u) that is the union
of the slabs associated with the descendents of v in T. Let the i-th leaf be v;,

so that n(q) = am. In addition, for each node v we store a list Cover(v) that

stores all the rectangles of SA that span n(v) but do not span n(parent(v)), sorted

by decreasing z-coordinates. Each list Cover(v) is represented by a dynamic tree

structure (e+, a (2,3)-tree [l] or a red-black tree [10,23]) augmented with a poincer

to the rectangle in Cover(v) with largest z-coordinate (we call it Afct[v)l. Every

node v also stores Best(v), which is the rectangle that has maximum Z-zxrdinate

in the set of Mar(tu)’s stored in the nodes on the path from Y t o the :CY sf T. It

is not hard to see that a rectangle R can appear in no more than 2logr difierent

Covcr(u)’s, so that the space complexity of T is O(r - lSxl logt) = O(r f nlog r).

.-

-
The following lemma follows immediately from the above definitions.

13 ORIGINAL PAGE IS ‘

OF POOR QUALITY

oRiGlNAL PAGE IS
OF POOR QUBLIW

L e m m a 4.1: Assuming the above data structures are correctly maintained for the cur-

rent position of A, then, for any n;, CurVisi is equal to Bcst(u;) where u; ia the leaf

that corresponds to rI; in T.

Proof: .4n immediate consequence of the definitions.

Let Y be the list of the 2n horizontal edges of the rectangles in E, sorted in decressing

order of their y-coordinates. For each edge in Y we store the name of the rectangle that

determined that edge. The list Y determines the events in the space sweep. The goal

of the sweep procedure is to discover all visible corner points and visibie vertica1 dead

ends. Initially, CurVis; is set to the “background” rectangle -=e, all the Di lists are

empty, and all the Cover(v) lists in T are empty.

To impiemeat the space sweep we iteratively examine each edge in Y. Suppose I is

the next event in Y . Let R be the rectangle of S to which I belongs. Let u (resp., b) be

the Ieft (resp., right) endpoint of 1. There are essentially two diEerent kinds of updates
we must perform for I: updating the slabs containing a and 6 (Subsection 4.1 below),

and updating the slabs spanned by I (Subsection 4.2 below). But before doing any of

these, we begin by updating the tree T so that it already reflects the occurrence of event

f. This is done as follows.

I

I€ I is the upper edge of R then, just after event, I, the swetping plane X inter-

sects R (where- i t did not before event l) and thedore we must insert R in all the

Coucr(v)’s to which it belongs and update their respective Mc=(u)’s accordingly. As

already stated, there are at most 2 log r such nodes v f T whose respective Coucr(v)’s

are to be updated. Since each such update takes O(1ogn) time, the amount of time

for dl such updates is O(logr1ogn) = O(1og‘n). On the other hand, if I is the lower

edge of R then, just after event I, the sweeping plane X no Iongcr intersects R (whereas

it did befote.evtnt I) and therefore we must delete R from all the Cuuer(u)’s to which

it belongs and update their respective Muz(v)’s accordingly. Of course, this too takes

O(log? n) time, by an argument similar to that for the c ~ e of insertions. Ficz:!?. we

must update the Best(tu) values in T, so that they refiect the new hfaz (v) values. -2:s

is easily done by a preorder traversal of T during which we maintain a stack ti .)I 2:;
the Best(u) values from the current node to the root. That is, if the traversal is at node

t q , and if the path from tu1 to the root of T is w1, IU:, . . . , wt, then the stack A contains

Best(wl) , Best(wt) , . . ., Best(tut) (with B e s t (q) at the top of the stack). It is trivial to

maintain the stack. A during the traversal of T, u follows. When we traverse down T to

C . .

a new node u, we compare t (A (t u p]) to t (M o t (r)) and push the rectangle achieving the

larger of these two onto A[tup]. When we traverse up T we pop the top element off A.

The traversal for updating the Best(v)'s takes O(r) time, since T has O(r) nodes. Thus

the time for updating T as a result of event i is O(log' II + r).

Piow that T is updated, we can proceed to compute the effect of event 1 on the various

I l i ' S .

4.1 Processing the &endpoint" slabs

We first describe the updating of D h where a E nh. (The updating of Dj, where b E nj,

is similar.) Since a is in n h there were two adjacent strips (say, strips s and si-1) in Step 3,

whose common boundary is the horizontal plane L containing 1. In moving X from s to

s + 1 past this horizontal plane L, we must delete the rectangular faces of Vis(E;) that

will no longer be intersected by X and insert the new rectangular f acu that will become

intersected by A. Determining these rectangular facu is easy, given the preprocessing

done in the previous step (Step 2). Suppose we are in strip s and crossing into strip s+ 1

at L. To determine which faces to delete from Dh we need only consult the list DClCteh,&

for each f in it, we foliow the Whereh(f) pointer which tells us where f occurs in Dh and

thus enables us to delete f from Oh in O(1) time. To determine which rectangular faces

to insert in Dh, we consult the list Imerth,H+l: for each f in that Ikt, the Ptedh,*+I(f)

pointer t e k us which rectangular face f' immediately precedes the location in Dh where

f is to be inserted, and following Whcreh(f') enables us to complete the insertion of f in
Dh in O(1) time. Of course after deleting f horn Dh we must update the Whereh array by

doing Wheteh(f) :=nil. Similarly, after inserting f in Dh we must change lVhtreh(f)

from being nil to pointing to where f is in Dh. Updating Dh therefore Clearb t a k a

O(jDeleteh,,l -+ I I m C f f h , s + l]) , which is O(lEh]) = O(n/r) because coincides with at

most O(lEhl) edges of Vis(&).

In addition, for each rectangular face f in Deieteh,, u Inserth,,+l we perform the

following computations for discovering corners and vertical dead ends on f in Vi5(€,1

that are also in Vis(& u Si). Let e be the projection of 1 onto f (in the projectic::

plane); r e c d that since f E Delctch,, U IILSerth,s+1, e must contain one of the horizontal

bwndaries of f . For each endpoint p of e, we check if p is in Vi$(E; u Si), by comparing

z(CurVisi) to the z-coordinate of the rectangle of Ei that is visibie in f: if =(Cutl.'i~;) is

the larger of the two then p is not in Vis(E;USi) , otherwise it is. If p is in l'is(EiUYC;)-

15

Le., p is visible-then we must find out, for each rectangular face f’ adjacent to p in

V i s (E j) , which rectangle of E, u Si is visible in f’. This is easily done by comparing the

rectangle CutVisi to the rectangle of E; that was visible in /’ (the one with the higher

:-coordinate wins).

In addition, if p is a corner point, then we must determine its restricted horizontal

shadow. To do this, we start walking from p along the horizontal ray leading to p’s

shadow in V i s (&) : we walk through all the rectanguiar faces of Vis (&;) that are cut

by this horizontd ray until either (i) we first hit a face whose z-coordinate is more than

z(CurV:’s;), or (ii) we reach the boundary of ni. Either of events (i) or (ii) gives us the

horizontal shadow of p in Vis(Si u &), Le., the restricted horizontal shadow of p.

The above computations for processing the event I for slab rIt, require a total, over

all f in Deletet,,, u Inserth,8+l, of O(jEi1) = O(n/r) time (this is because even though

V i s (E i) has O((n/r)’) faces, the number of faces cut by any particular position of the
sweeping plane X is O(lEi1)).

4.2 Processing the %panned” slabs

Assume that the processing of the ‘endpoint” slabs IIh and IIj has already been done,

as explained in Subsection 4.1. This section deals with processing the ‘spanned” slabs,

i.e., the for which R E Spa+. (Recall that R is the rectangle of S to which event I
. belongs.)

Let U denote the set of nits‘ that are affected by event I and thus will need further

processing. Thus U consists of the IIi’s whose respective CurVisi’s will change rs a

result of event 1 (either CurVisi was R and will cease to be R, or it WJS not R and

will become R). Finding U is etsy to do: Lemma 4.1 implies that the new value of each

CurVis;-call it NewCutVisi-just after event 1 is readily available in the tree T (recall

that T has already been updated to refkt event I). Therefore we can easily compute U
as follows. For each IIi, compare CurVis; to NewCutVisj , Le., to the Best(tpi) entry

avaiiabie in T: if they are not the same rectangle then include TIi in U.
For each rIj E U, we perform the following computation. For convenience, in what

follows we Iet-RI stand for CurVis;, and we let R2 stand for I\.’ewCutVisi. Thus R1
is the rectangle that is in CutVisi just before event I, and Rz is the rectangle that

becomes in CurVis; just after event 1 (RI # Rz by definition of V) . Note that R will

be one of R1 or R? (Figure 6 depicts the case R1 = R). We obtain from D; the set 0:

16

Figure 6: Illustrating the case =(&) > =(I&).

of rectangusar faces of Vis(&) whose associated z-values fall between z(R1) and =(R?).
If r(&) > z(&) (as in Figure 6), then the rectangular faces in D' are not visible (in

E; u S;) before 1, but become visible after 1. Otherwise, if t (R1) < t (R t) , then the

rectangular faces in D' are visible before I, but are not visible after 1. In either case, (a

portion of) each of these rectangular faces is part of the output, Vis(Ei u Si). For each

such rectangular face f , we determine the intersection of f with A, the sweep piant (or,

equivalently, the projection of I onto f). Let p E f be an endpoint of this intersectionj

and let e be the vertical line segment of Vis(&) that contains p. For each such point p,

we find the rectangles of E, u Si that are visible in the vicinity of p by comparing the

two r-values (in Vis(&)) of the two rectangular faces adjacent to e, to z(R1) and z(R2).

Note that p forms a visible verticd dead end in Vis(& U y';) (and hence in V i s (S)) . We
complete the computations for I& by assigning CurVisi := Rz. The processing of each

such I& E U clearly requires O (K) time, where k' = ID'[(recall that a portion of each

face in D' is visible in Ei u Si, hence is part of the output).

4.3 Analyzing Step 3

When the slab-sweeping procedure terminates we will have computed all the :orner

points, restricted horizontal shadows, and vertical dead ends in \,-is{,C; i' E,). (Ke prove

this in the next lemma.) From the comments made during the detailed presentation of

S e p 3, it is easy to see that performing this entire step requires O (n log' n+nr+n'/r+-k)

time, where k is the size of V i s (S) . In the following lemma we establish the correctness

of our method so far.

17

Lemma 4.2: The previous steps correctly find d l corner points and vertical dead ends

in every Vis(& u E;) and, for each such point p, correctly determine the rectangles of

E; u Si that are visible its vicinity (;.e., in each rectangular face of t'is(,C; U &) that is

adjacent to p) .

Proof: (a:) Suppose p is a corner point or vertical dead end ir, 'v-isiS; u Ei) , where

IIi is the slab containing p. We wish to show that p will be discwerd in the previous

steps of the aIgorithm. Let us treat each of the possible cases.

Case 1. p is a corner point, the projection of a vertex p' of some R f E. Let e

be the horizontal edge of R containing p'. Since p is a vertex in Vis (& u Si) , p must

be a vertex in Vis(Ei) . Therefore, Step 2 will have computed which rectangle of S is

visible in each face that U adjacent to p in Vis (&) . Therefore when event e is processed

by Step 3, that step must indeed discover that p is visible in Vid(Ei US^) (this follows

from the way Step 3 works). Moreover, for each face f of Vis(Ei) that is adjacent to
p, Step 3 correctly determines the rectangle of S visible in f when it compares CttrVisi

to the rectangle of Endpointi that is visible in f and chooses the one with the larger

z-coordinate.

Case 2. p is a visible vertical dead end in viS(Ei U Sisi>, Le., i t is of the form T or

1. If p is a vertex in Vis(E'), then an argument similar to that for Case 1 applies. So

suppose is not a vertex in Vis(&), Le., i t occurs on the interior of an edge e of Vis(Ei) .

Obviously e must be verticd so that a portion of it becomes the vertical part of the T

or 1 in Vis(& u Si), the horizontal part of the T or I being contributed by the edge

of a rectangle in Span,-. We continue the discussion assuming that p is, in Vis(& u S;),
of the form I (the argument for when p is of the form T is similar). -4s already stated,

the I that p forms is the intersection of a portion of the (vertical) segment e with a

horizontal h e segment 1 that is the projection of an edge I' of a rectangle, call it &io,

that spans I&. (Note that becomes the new CurVis; jcst after event I' is processed.)

Let f' and f" be the two rectangular faces of Vis(&) that are adjacent to e just above

p (Le., just before event I'). Let ET and R" be the two rectangles of Ei that are visible

in Vis(&) in (respectively) faces f' and f". Then R' and IT' mcst both have lower

z-coordinates than that of Rbir (because p is a -L in Vis (& u Si)) . Moreover, at least

OM of ET and R" (possibly both) must be visibie around p in Vis (& u &), i.e., have

a z-coordinate larger than that of the CurVis; just before event 1' (otherwise p could

not be a I). Therefore the search performed by Step 3 lor event I' will discover at least,

18

ORIGINAL PAGE IS
OF POOR QUALtTY

one o f f ' and I"; hence, discover the intersection of e with 1 at p and all the rectangles

visible in the faces around p.

(e:) Let p be any point determined to be "visible" by Step 3. W e wish to show

that this action of Step 3 is correct, i.e., that p is indeed visible in Vis(& U E,), where

ni is the slab containing p. Obviously p must be in Vis(&) as well, but not ne:essaril::

as a vertex (perhaps as a point along some edge). Any rectangle R that can porsi'riy

obstruct p is either in Ei or in Spanj. Thus, since we compare p to the rectangles in

E; in Step 2, and, in Step 3, to the rectangle with largest :-coordinate whose projection

contains p, p is indeed a visible point. Moreover, since p must correspond to an event in

one of the plane sweeps of Steps 3 and 3, by aiguments simiiar to those for the '(+) part

of the proof, we do discover all the rectangles of S that are visible in the faces adjacent

to p. This completes the proof. I

In Step 4 we repeat the above three steps, except that the roles of the z-axis and

y-axis are reversed, and we do not bother performing the extra steps to determine corner

points and their respective shadows (thn was already done in Step 3). Thus, we Knd
all the visible horizontal dead ends. This gives us all the visible vertices of Vis(S) ,

except those that are horizontal shadows. In the next section we show how to extend

the restricted horizontal shadows (in Vis(S; U &)'s) into true horizontal shadows (in

Vis(S)) , thus giving us all the vertices of Vis(S) .

5 Step 5: Constructing Vis(S)

In this step we complete the construction of Vis(S). From Steps 3 and 4 w e have all

the visible vertices of Vis(S) , except those that are horizontal shadows. Moreover, for

each visible vertex p we have the rectangles of S that are visible in each face adjacent to

p. in order to complete the construction ofVis (S) we must determine all the horizontal

shadows in V i s (S) , a well as all the adjacency relationships between vertices and edges

in Vis(S) .

Let B be the set of all visible horizoncal dead ends, visible vertkal dead ends, risible

corner points, and the restricted horizontal shadows of visible corner points. \Ye begin

by constructing G, the planar graph determined by the adjacencies of the vertices in

B. We construct all the adjacencies between these vertices by performing two calls to a

2-dimensional bucket sorting routine, each time giving B as the set to be sorted. In the

-

19

first call we specify that the roiitine shorrld sort lexicographically by (2, y) coordinates,

resulting in the list &,. In the second call we specify that the routine sort lexicograph-

ically by (y,z) coordinates, giving the list &. This requires O(n -+ k) time, where k is
the numbs s; vertices in V i s (S) . For any vertex p in B we determine the other vertices

of B that art eqacent to p in G Sy examining the immediate predecessors and successors

of p in Btu tti s",,,. In addition, recall that we have for each p the rectangles that are

visible in each cf the faces of G adjacent to p.

..

Having so constructed G, we nezd only extend each restricted horizontal shadow in

G to a true horizontal shadow. Let us redivide the space by the vertical dividing plana

used in Step 1, again giving us the slabs Ill, n:, ..., n,. From the first part of this

Step 5 (explained above) we now have all the vertices in Vis(S; V E;) as well as all their

adjacencies in V i s (S) . We say that a vertical segment s in Vis(S; U E;) is horitontuliy

ezposedfrom tAe lef t (resp., rigict) if there is a horizontal line that intersects no vertical
segments in Vis(Sj U Ei) between s and the left (resp., right) boundary of Ili. For each

slab IIi we define the left projile (resp., right ptojile) to be the y-sorted list of vertical

segments of Vis(& U E;) that are horizontally exposed from the left (resp., right). Let

t i and R. denote the left and right profiles of TI;, respectively.

The method for constructing L; is pu follows (the method for Ri is similar). Let i;
be the set of all verticss p in Vis(S; u Ei) such that p is adjacent to a horizontal (visible

or shadow) segment in Vis(E; u E;) that intersects the left boundary of TI;. We can

construct i; by examining all the vertices in Vis(S; U E;) once. Sort the points in 2; by
decreasing y-coordinates. Each point p in & determines a segment in L;, namely, the

vertical segment that is adjacent to p. In addition, for each point p we traverse the face

of Vis(& U E;) that is adjacent to p , but does not contain the vertical segment adjacent

to p, to see if it contains a vertical segment horizontally exposed from the left. Note

that by the tiehition oi the points in & we will traverse ea& such face only once. After
& have comp1eted aI1 such trave=&, we will have the entire list L;. This construction

takes O(n -i- k;) time, where is the number of vertices in Vis(& U E;).
We construtt a graph that hBs a node for ea& L; and R, list, and connec:s each I&

and and each Li to &+I. Using the terminology of Chazelle and Guibts (Si, this to

graph is a catalogue graph. Thus, we can apply the 'fractional cascading" technique IS] to

build a datastructure that consists of augmented lists L: and I?:, for each i in { 1,2, ..., r},
a

as well as a number of pointers between consecutive augmented Iists, such that given the

20

position of a point p in some L: list this structure allows one to locate p in L; and L:+*
in O(1) time. The similar property holds for the lists. Using the method of Chazelle

and Guibas (51, this data structure can be constructed in time and space proportional

to the total number of elements in all :he k t s (which is O(n + k)).
Let us return to the problem at Eati. azllleiy, completing the construction of t ' i ~ (S)

by finding the true horizontal shadow Fcints of each corner point p that currently has

its restricted horizontal shadow falling on a boundary of n,-, where p E I?;. Let us con-

centrate on the computation of the true horizontal shadow of a point p whose restricted

horizontal shadow falls on the left boundary of IIi (the method for the c s e when p's

restricted shadow falls on the right boundary of I'Xi is similar). We first locate y(p) in

q-l in O(1ogn) time by using the binary search technique. Then, we can locate y(p) in

R,--l in O(1) time. If the interval in Ri-1 in which y(p) falls contains a vercical segment,

then we have found the true horizontal shadow of p i m p l y compute the intersection

of the line y = y(p) with this segment. If, on the other hand, this interva1 is empty of
any vertical segments (of Vis(Sj-1 u Ei-l))i then we use the position of y(p) in g:.,,
to locate y(p) in q-2 in O(1) time. We then repeat the above procedure until we lo-

cate p's horizontal shadow or run out of liits to search in (in which case p's shadow is

(-00, y(p))). This searching procedure t a k a at most O(1ogn + r) time for each porner

point p.

The only thing left, then, is to link each new horizontal shadow into the graph G to

give us Vis(S) while removing all the old (restricted) horizontal shadows they replace.

To perform this l a t computation construct a tuple (I, y, &)), where (2, y) is the upper
endpoint of the vertical segment on which the horizontal shadow (2, y(p)) of p lies. W e

can then sort ail these tuples in O(n) additional time. Using this sorted list we can

complete the construction of Vis(S) in O(n) time. Since there are a t most O(n) corner

points for which we perform this procedure, the total time fot finding these horizontal

shadows is O(n log n + rn i- k) time. This completes the algorithm. We summarize the

above discussion in the following theorem.

-

Theorem 5.1: Given a set S of n isotbecic rectangles in pi one can solve the hidden-

surface elimination problem for S in O(n log' n + (n=/r) f rn + k) time, where r is any

inTeger parameter and k is the size of the output. I

Corollary 5.2: One can solve the hidden-surface elimination problem for an isothetic

21

collection of rectangles in O(n1-3 + k) time.

Proof: Set r = 6. I

6 Conclusion

In this paper we have given an algorithm for solving the hidden-surface elimination

problem for rectangles that runs in O(n’*’ 4- k) time, which is output-sensitive and

simultaneously worst-case optimal (for quadratic k). Moreover, our algorithm shouid be

competitive with existing methods for realistic values of n. Of course, solving hidden-

surface elimination for rectangles is a special case of the general problem. Can the general

hidden-surface elimination probiem be solved in time proportional to k f- o(n‘) ?

Acknowledgements

We would Iike to thank S. Rao Eiosaraju and iMichael McKenna for helpful chcussions.

References
[l] A.V. Aho, J.E. Hopcroft, and J.D. U h a n , The Design and Andy& of Computer

Alcodarns, Adfison- Wsley, Reading, Mw., 19i4.

(21 B.G. Baumgart, ‘A Polyhedron Representation for Computer Vision,” Proc. 1975
AFIPS Nat iond Computer Cunf., 44, MIPS Press, 1975, 389-596.

(31 J.L. Bentley and D. Wood, ’An Optimal Worst Case Algorithm for Reporting
Intersections of Rectangles,” IEEE Trans. on Computers, Vol. C-29, 1980, 571-
S i i .

[4) M. Bern, *Hidden Surface RemovaI for Rectangles,” Proe. 4th ACIU Symp. on
Compututiond Geometry, 1988, 183-192.

(51 B. Chazelle and L.J. Guibas, ‘Fractional Cascading: L A Data Structuring Tech-
nique,” Algorithmica, Vol. 1, No. 2, pp. 133-162.

[S] F. DCvai, “Quadratic Bounds for Hidden-Line Elimination,” Proe. 2nd A CM Symp.
on Computational Geometry, 1986, 269-275.

[i] H. Edeisbrunner, A Lgorithms in Combinuton’d Geometry, Springer-Verfag, New
I’ork, 1987.

[8] H. EdeIsbrunner and M.H. Overmars, “Batched Dynamic Solutions to Decompos- - abie Searching Problems,” J. Algorithms, Vol. 6, 3985, 515-542.

(91 h1.T. Goodrich, “A Polygonal Approach to Hidden-Line Elimination,” Proc. o/
25Lh Annual Alferton Conference on Communication; Control, and Computing,
1987, 849-858.

23

[lo] L.J. Cujbas and R. Sedgewick, ‘A Dichromatic Framework for Balanced Trees,”
PTOC. 19th IEEE Symp. on Foundations of Computer Science, 1978, 8-21.

Ill] L.J. Guibas and J. Stolfi, “Primitives for the Manipulation of General Subdivi-
sions and the Computation of Voronoi Diagrams,” A CM Transactions on Graphics,
Vol. 4 , 1985,15-123.

‘13; R.H. Giiting and T. Ottmann, “Xew Algorithms For Special Cases of the Hidden
Line Elimination Problem,” Computer Vision, Graphics, and Image Processing,
Vol. 40, 1987, 188-204. (A preliminary version of this work appeared in Proc.
Syrnp. on Theoretical Aspects of Computer Science, 1985, 161-171.)

[131 M. McKenna, ‘Vorst-cue Optimal Hidden-Surface Removal,’’ A CM Transactions
on Graphics, Vol. 6, No.1, January 1987, 19-28.

[l4] D.E. Muller and F.P. Preparata, “Finding the Intersection of Two Convex Poly-
. hedra,” Theoretical Computer Science, Vol. ?, No. 2, October 1918, 217-236.

[15] 0. Nurmi, ‘A F a t Line-Sweep Algorithm For Hidden Line Elimination,” BIT,
VoI. 25, 1985,466-472.

[IS] T. Ottmann and P. Widmayer, “Solving Visibility Problems by Using Skeleton
Structures: Proc. 11 th Symp. on Mathematical Foundations of Computer Science,
1984,454-470.

(171 F.P. Preparata and M.I. Shsmos, Computational Geometry: A n Introduction,
Springer-Verlag, New York, NY, 1985.

[18] F.P. Preparata, J.S. Vitter, and M. Yvinec, “Computation of the Axial View of a
Set of tothetic Parallelepipedss,” Manuscript, 1987. (Cited in [4].)

[19] A. Schmitt, “On the Time and Space Complexity of Certain Exact Hidden Line
Algorithms,” Univenikt K a r l d e , Fakultat fib Infonnatik, Report 24/81, 1981.
(Cited in (121.)

[20] A. Schmitt, ‘Time and Space Bounds for Hidden Line and Hidden Surface Algo-

[21] S. Sechrest and D.P. Gretnberg, “A Visibility Polygon Reconstruction Algorithm,”
ACLU Transactions on Gruphics, Vol. 1, No. 1, January 1982, 25-42.

[22) LE. Sutherland, R.F. Sproull, and R.A. Schumacker, ‘A Characterization of Ten
Hidden-Surface Algorithms,” Computing Surveys, VoI. 6, No. 1, March ?974,1-25.

[23] R.E. Tarjan, Data Structures and Network Algordhms, SIAM, Philadelphia, PA,

rithm,” EUROGRAPHICS ’81 ,4346.

1983.

23

1

f
b

C-

P i

~d

X

@I

Figure2

